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Abstract

Objectives—While antimicrobial resistance threatens the prevention, treatment, and control of 

infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide 

can alert new threats and promote timely response. This study explores statistical algorithms for 

recognizing geographic clustering of multi-resistant microbes within a healthcare network and 

monitoring the dissemination of new strains over time.

Methods—Escherichia coli antimicrobial susceptibility data from a three-year period stored in 

WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan's spatial 

multinomial model with two models for defining geographic proximity. We explored geographic 

clustering of multi-resistance phenotypes within the network and changes in clustering over time.

Results—Geographic clustering identified from both latitude/longitude and non-parametric 

facility groupings geographic models were similar, while the latter was offers greater flexibility 

and generalizability. Iterative application of the clustering algorithms suggested the possible 

recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single 

hospital and subsequent dissemination to others.

Conclusion—Systematic analysis of routine antimicrobial resistance susceptibility test results 

supports the recognition of geographic clustering of microbial phenotypic subpopulations with 

WHONET and SaTScan, and iterative application of these algorithms can detect the initial 
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appearance in and dissemination across a region prompting early investigation, response, and 

containment measures.
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1. Introduction

1.1 Antimicrobial resistance

The emergence of antimicrobial resistance hinders our ability to treat infectious diseases 

with profound impacts on suffering, disability, death, and healthcare costs, and high rates of 

resistance are seen in bacteria causing common health-care associated and community-

acquired infections in all World Health Organization (WHO) regions [1]. Dr. Keiji Fukuda, 

WHO Assistant Director-General of Health Security, has warned that a “post-antibiotic era – 

in which common infections and minor injuries can kill… is a very real possibility for the 

21st century” [2].

To confront this urgent threat, a global action plan was endorsed by the sixty-eighth World 

Health Assembly in May 2015 to confront antimicrobial resistance [2]. The global action 

plan outlined five strategic objectives to “ensure, for as long as possible, continuity of 

successful treatment and prevention of infectious diseases with effective and safe medicines 

that are quality-assured, used in a responsible way, and accessible to all who need them” [1]. 

These goals include improving awareness and understanding of antimicrobial resistance, 

strengthening surveillance and research, reducing the incidence of infection, optimizing the 

use of antimicrobial agents, and developing sustainable economic investments in new 

medicines, diagnostic tools, and other interventions for the needs of all countries [2].

Two key drivers impacting the epidemiology of microbial populations are: 1) selection 

pressure due to antimicrobial use and especially misuse in healthcare, agricultural, and 

industrial settings; and 2) transmission of resistant strains between individuals, communities, 

and nations due to local deficiencies in community and healthcare facility hygiene and to 

domestic and international trade and travel [3]. In this work, we have explored algorithms 

for recognizing pathogen transmission and dissemination in order to support early response 

and containment [4–6].

1.2 Cluster detection with routine microbiology laboratory data

WHO highlighted in the global action plan the importance of surveillance in tracking and 

confronting antimicrobial resistance [1], while the WHO Global Strategy for Containment of 

Antimicrobial Resistance recognizes the role of national reference laboratories and 

surveillance networks as a “fundamental priority” for containment efforts [7].

The WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, located at 

Brigham and Women's Hospital in Boston, Massachusetts USA, has developed, 

disseminated, and supported WHONET as a surveillance software for the management of 

Park et al. Page 2

Expert Rev Anti Infect Ther. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microbiological laboratory data since 1989 – based on earlier work with mainframe 

computers initiated in 1964 – with a special focus on the analysis and interpretation of 

antimicrobial susceptibility test results [8–10]. WHONET supports surveillance of infectious 

diseases and antimicrobial resistance in over 2,000 clinical, public health, veterinary, and 

food laboratories in over 120 countries worldwide. BacLink, the data import module of 

WHONET, is used to reformat and standardize data from diverse laboratory information 

systems into WHONET format. Data to be entered or uploaded into WHONET is 

configurable by the user, but typically includes patient identifiers and demographics (age, 

gender), medical encounter details (healthcare facility, medical service or ward, date of 

admission), specimen identifier and details (date, anatomical sample site), and 

microbiological findings (organism identification and antimicrobial susceptibility test 

results).

In addition to core descriptive statistics on organism frequency, distribution, and resistance 

data and automated alerts on findings of public health importance, WHONET offers a 

number of more sophisticated algorithms for the statistical detection of case clusters 

suggestive of disease outbreaks. A number of such algorithms are already implemented in 

WHONET through an integration with the free SaTScan software [11–12], a free cluster 

detection tool using purely temporal, purely spatial, and spatio-temporal scan statistics in 

either a prospective or retrospective setting, for either count or continuous data. Using 

Monte Carlo simulations, SaTScan utilizes temporal and/or spatial scanning windows to 

search for clusters in which the number of observed cases within a given time period and/or 

geographic entity exceeds to a statistically significant degree the expected number of cases 

for that time period and location, adjusting for the multiple testing inherent in the many 

cluster locations and sizes evaluated [13].

We have explored the detection of clusters using a number of routinely available data 

elements: organism, serotype, phage type, multi-resistance phenotype, biochemical 

phenotype, medical ward (or groups of wards), medical service (or groups of services), 

latitude and longitude of the testing laboratory or healthcare facility, as well as combinations 

of these variables, for example resistance phenotype + ward [14–18]. Of all of these 

variables, we have repeatedly demonstrated the value of multi-resistance phenotypes (i.e. the 

set of antimicrobials to which a microbial isolate is nonsusceptible) in improving specificity 

of alerts (as detected cases have homogeneous characteristics), sensitivity (through decreases 

in background noise), and timeliness (through improved specificity and sensitivity) [16].

In previous work, we have explored use of the WHONET-SaTScan integrated tool for the 

detection of possible outbreaks in the community [14, 15], within individual healthcare and 

long-term care facilities [16, 17], and across facilities in healthcare networks [18]. Although 

outbreak detection is limited when relying on routinely collected laboratory data, as patients 

may not present to medical attention and there may be biases in clinical sampling and test 

practices, microbiology laboratories around the world demand that we examine them for 

events of public health importance with subsequent epidemiological and/or microbiological 

investigation as warranted.
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While the focus of our earlier work has been the detection of possible disease outbreaks 

meriting prompt recognition and response, in this study we explored the use of purely 

spatial, time-independent algorithms with alternate objectives in mind. The first was to 

explore the ability of spatial algorithms to recognize static geographic clustering of 

microorganisms and strain phenotypes using routine microbiology laboratory data. Such 

geographic clustering would be expected in some clinical settings, such as greater 

predominance of multi-resistant strains in intensive care units or tertiary care facilities, but 

unexpected in others, for example in general medical wards or certain long-term care 

facilities, but not others. The second objective was to explore whether the iterative 

application of these spatial algorithms over time could recognize the initial appearance and 

gradual dissemination of emerging threats that could be missed by analysis strategies 

optimized for the detection of acute changes in case incidence.

We explored the algorithms using the distribution of Escherichia coli (E. coli) across a 

multicenter network of healthcare facilities, in part because of E. coli's importance in both 

community and healthcare-associated infections and in part because of important therapeutic 

challenges posed by resistant strains. However, the approach developed is generalizable to 

other pathogens and geographic settings, for example across wards within a healthcare 

facility [19]. High proportions of resistance in E. coli to third-generation cephalosporins, 

fluoroquinolones, and a number of other antimicrobial classes has required an increased 

reliance on reserve agents such as carbapenems, to which resistance is rapidly rising, and 

colistin. There is increased awareness of the threat posed by E. coli multi-locus Sequence 

Type 131 (ST131), recognized as a major cause of invasive multidrug-resistant infections in 

the United States and elsewhere [20].

2. Methods

2.1 Data sources and preparation

Ten facilities affiliated with one healthcare system and subscribing to the SafetySurveillor 

infection prevention module of Premier, Inc. participated in this project. The facilities 

included both hospitals and long-term care facilities. Ethical approval was received from the 

Partners Healthcare Institutional Review Board, as well as from the relevant Institutional 

Review Boards of each facility. Microbiological data covering a three-year period included 

patient (study identifier), encounter (clinical service and ward, date of admission) sample 

(identifier, collection date, type), and microbiological findings (organism identification, 

susceptibility test results). Data files included both quantitative antimicrobial susceptibility 

test results, notably disk diffusion zone diameters and minimal inhibitory concentrations 

(MICs), but within this study we focused on the qualitative interpretations of the test as 

“susceptible” versus “non-susceptible” using the interpretation provided by the submitting 

laboratory, consistent with recent recommendations of the Clinical and Laboratory Standards 

Institute (CLSI) guidelines [21]. This study was approved by the Partners Human Research 

Committee.

Results from all clinical isolates were available in the source analysis database, but only the 

first isolate of each species per patient in a 365-day period was included for study. Clinical 

isolates studied represented both community and healthcare-associated infections. The 
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database included E. coli results for only diagnostic samples, no screening isolates. 

Consequently, the statistical clusters identified in this work reflect the patient populations 

(both inpatient and outpatient) served by particular hospital laboratories, and not necessarily 

patients hospitalized within those facilities. We have explored the application of the 

algorithms described in this application to presumptive isolates from healthcare-associated 

infections (based on the difference between the hospital admission date and the specimen 

collection date) [19], but the results are not presented here.

In past work, we have consistently demonstrated the value of multi-drug resistance 

phenotypes to be meaningful and specific proxy indicators of strain relatedness. As the 

susceptibility test practices in each facility were not identical, we explored the availability of 

data for each antimicrobial tested from each facility in order to identify a subset of all 

antimicrobials for which results were consistently available for most isolates. To accomplish 

this, we utilized the “Number tested” column of WHONET's %RIS and Test Measurements 

analysis. Our goal was to identify antimicrobials tested throughout the network for which at 

least 90% of relevant E. coli isolates were tested within each facility. This core set of 

commonly tested antimicrobials were utilized to define a “multi-resistance phenotype” for 

each microbial isolate.

2.2 Detection of geographic clusters

In our previous work, we have relied primarily on SaTScan's prospective space-time 

permutation model, integrated into WHONET, to identify outbreaks in time and space. In 

this study, we explored three probability models: Poisson (with hospital-based incidence of 

E. coli infection estimated with available “patient-day” statistics), Bernoulli (comparing 

proportions of E. coli among all samples tested or organisms isolated between facilities), and 

multinomial (considering different E. coli resistance categories). Based on our early 

explorations of these three models, we considered the multinomial to be most promising and 

robust for further development and generalizable to a variety of scenarios as it does not 

require external denominators (patient catchment population, facility- or ward-level patient 

days, or laboratory test volumes) that may not always be available, reliable, or stable [22]. 

While the space-time permutation model and temporal Poisson models have been 

implemented within WHONET for several years, this is not yet the case with the 

multinomial model pending evaluation. Consequently analyses were performed directly with 

SaTScan 9.4.2 [12, 13].

SaTScan's “spatial” algorithms require a “spatial” variable. Most frequently, this is a latitude 

and longitude coordinate associated with some aspect of the clinical case, for example, 

patient home residence or place of work, or site of clinical care. In previous work, we have 

utilized grid coordinate-based spatial variables such as the latitude and longitude of the 

testing laboratory, non-parametric spatial variables such as medical ward or service, or 

conceptual spatial variables such as microbial species, resistance phenotype, serotype, or 

phage type [15–18]. In this study, our focus was on the location of the patient's medical 

facility. The relationship between geographic locations can be defined in two ways in 

SaTScan: 1) grid coordinates, such as latitude and longitude; and 2) non-parametric 
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groupings utilizing SaTScan's non-Euclidean “neighbor” and “meta-location” features. Both 

approaches were evaluated in this study.

For grid coordinates, the SaTScan “coordinate location file” was populated with the 

longitude and latitude of the healthcare facility associated with each patient isolate. 

Latitudes and longitudes were determined from the batch geocoding utility found at 

www.spatialepidemiology.net, maintained by Imperial College London and the Wellcome 

Trust [23].

For non-parametric geographic relationships, we utilized the SaTScan “meta-location” file 

feature to create meaningful location groupings not defined by grid coordinates. Meaningful 

groupings can be defined based on similar type of care, geographic proximity, and known 

patient referral patterns between facilities. An example of a “meta” location is the grouping 

of a hospital with its affiliated long-term care facilities, such as nursing homes and 

rehabilitation centers, as in the following example: [CityA] = Hosp1, Hosp2, LTC1, LTC2, 

LTC3.

The multinomial model requires the identification of a “categorical” variable, and explores 

whether cases within each category are randomly distributed or not across the geographical 

regions or entities. For our analyses, an isolate's multi-resistance phenotype was the 

categorical variable used – in other words, we explored: 1) whether the distribution of 

different types of E. coli across the healthcare network as defined by their observed multi-

resistance phenotype was consistent with random variation or not; and 2) if not, which 

facility (or facility groupings) clusters were of greatest statistical significance and which 

observed resistance phenotypes exceeded expectations to the greatest degree as estimated by 

relative risk.

SaTScan scan statistics use circular (or optionally elliptical) scan windows of varying radii 

in order to determine the most statistically significant clusters in geographic space involving 

one or more healthcare facility. The default SaTScan settings of 999 Monte Carlo 

replications and a geographic maximum scan window of 50% of cases were utilized. 

Clusters with the largest reported likelihood ratios indicate the most likely clusters, of either 

high or low incidence.

3. Results

3.1 Descriptive statistics

Institutional characteristics of the ten healthcare facilities studied are provided in Table 1, 

derived from the American Hospital Directory [24] and the institutional web page of each 

facility.

As indicated in Table 2, there were 54,651 unique patients with positive specimens in the 

entire network within the three-year study period, accounting for 73,705 microbial isolates 

in total. 19,362 patients (35% of all patients) tested positive for E. coli with 28,377 total 

isolates. The distribution of E. coli isolates by healthcare facility is displayed in Figure 1. 

The largest facility was Hospital 3, the tertiary care teaching hospital for this network with 
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514 patient beds and its laboratory accounts for 42% of all isolates and 39% of all E. coli. 

Hospital 2 was the next largest facility with 155 patient beds accounting for 23% of all 

isolates and 24% of all E. coli. Samples collected in long-term care facilities contributed 1% 

of the total isolates and 0.7% of the E. coli.

The categorization of strains by multi-resistance phenotypes depends on the identification of 

a core set of antimicrobials that consistently have data available for analysis. Over 15 

distinct antimicrobials were tested by the laboratories of the various facilities, but the 

specific antimicrobial tested varied from facility to facility, as did their testing practices (e.g. 
only testing certain antimicrobials in urine) and reporting practices (e.g. suppress results for 

third-line agents if an organism is found to be susceptible to a number of first-line agents). 

In examining the number of test results for each antimicrobial for each facility, we excluded 

from further consideration antimicrobials that were infrequently tested. If the 

microbiological activity and testing of two antimicrobials were substantially similar, for 

example ciprofloxacin and levofloxacin, only one of the two was included in the set of core 

antimicrobials.

Given these considerations, we identified a core set of six antimicrobials suitable for 

assigning a multi-resistance phenotype to each strain: ampicillin (AMP), ceftriaxone (CRO), 

ceftazidime (CAZ), gentamicin (GEN), levofloxacin (LVX), and trimethoprim/

sulfamethoxazole (SXT). For example, a strain with phenotype “AMP CRO CAZ” is 

nonsusceptible to the three antimicrobials indicated, but susceptible to the remaining three. 

This set of six antimicrobials worked well for purposes of strain characterization with the 

exception of Hospital 4 (Table 2), in which case the CAZ result was frequently missing. 

Consequently, this facility was excluded from further analyses. Excluding Hospital 4, 

complete results for these six antimicrobial were available for 93% of the E. coli studied. 

Because of this good level of data completeness and the lack of meaningful information 

provided by isolates missing test results, we utilized the WHONET feature “Exclude isolates 

missing results for one or more antimicrobials”. The distribution of all resistance phenotypes 

by facility is provided in Table 3.

Special public health concern about invasive, multi-resistant E. coli ST131 was noted above. 

Conveniently, there is a specific multi-resistance phenotype observed in a large proportion of 

E. coli ST131 isolates which can be used as a useful proxy phenotypic marker of this strain 

– specifically these strains are often possess a CTX-M-15 or CTX-M-14 extended-spectrum 

beta-lactamase, which confers resistance to CTX but not to CAZ, as well as typical 

mutations to the gyrA and parC conferring resistance to fluoroquinolones, such as LVX [25]. 

Not all E.coli isolates with this phenotype will have the ST131 sequence type, and not all E. 
coli ST131 isolates will display this phenotype, but a number of studies have highlighted a 

useful association of this phenotype with this genotype [26,27], including a study in two 

U.S. states demonstrating that 48% of CTX-M-15 producing E. coli and 66% of CTX-M-14-

producing E. coli were indeed E. coli ST131 [28]. Multi-resistance phenotypes that include 

this type of resistance (“AMP CRO LVX”) are highlighted in Table 3 as consistent with the 

typical E. coli ST131 phenotype. As seen in Figure 1, only 28% of such isolates were from 

patients at the tertiary care center Hospital 3, whereas 81% were isolated from the much 

smaller Hospital 2.
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3.2 Cross-sectional multinomial analysis

Table 4 presents the results of the multinomial analysis where relatedness of healthcare 

facilities was defined by geographic proximity through latitude and longitude. Three 

statistically significant clusters were found: Cluster 1 included two hospitals and two long-

term care facilities, and the relative risk associated with each resistance phenotype within 

these groups of facilities is provided. For example, a patient within these four facilities 

(Hospital 1, Hospital 2, LTC 2, and LTC 3) has a 5.44 greater risk of testing positive for an 

E. coli isolate with multiresistance phenotype “AMP CRO GEN LVX SXT” compared to a 

patient in the remaining six facilities in the network. Cluster 2 involves a single hospital and 

an associated long-term care facility providing psychiatric care, while Cluster 3 only 

involves a single hospital. A relative risk of ∞ indicates that this resistance phenotype was 

only seen in this facility/facility grouping and no others, a finding which in itself should 

merit further investigation.

Table 5 presents the corresponding results for the multinomial analysis utilizing facilities 

and facility groupings. The overall findings in Table 5 have many similarities to those of 

Table 4. For example, Cluster 1 in the latitude-longitude analysis is comparable to Cluster 1 

in the meta-location analysis; Cluster 2 in the former is comparable to Cluster 2 in the latter; 

and Cluster 3 in the former is comparable to Cluster 4 in the latter. The observed relative 

risks between the two analyses are also very similar, for example in reviewing the findings 

of Cluster 1 in the two analyses, the three resistance phenotypes consistent with the putative 

E. coli ST131 phenotype have relative risks of 2.27, 4.17, and 5.44 in the former and 2.96, 

3.95, and 5.45 in the latter.

The meta-location analysis disclosed statistically significant findings in Hospital 5 (Cluster 

3) that were not seen in the latitude-longitude analysis. A noteworthy finding from this 

cluster is that the relative risk associated with phenotype “AMP CRO CAZ GEN SXT” is 

25.94, which should prompt investigation into the epidemiology and risk factors associated 

with this phenotype in the patient population served by Hospital 5.

3.3 Iterative multinomial analysis

Further analyses explored whether there were any changes in geographic clustering of E. 
coli resistance phenotypes during the three years of the study. We compared location clusters 

identified in Year 1 with those identified in Year 3 with results displayed in Table 6. As the 

previous section demonstrated that the clusters derived from latitude and longitude-based 

analyses were broadly similar to those of the meta-location analyses, only the latter are 

presented here. Cluster 1 was clearly seen in both years with similar resistance phenotypes, 

but if one considers the relative risks associated with the three E. coli ST131 phenotypes, 

these dropped from 4.89, 9.79, and 14.68 in Year 1 to 3.39, 3.14, and 5.03 respectively in 

Year 3 suggestive of either an overall decrease in the frequency of the phenotype (which was 

not the observation in this situation) or more likely a dissemination from Hospital 2 to 

Hospital 1 such that the statistical significance of the clustering within the Hospital 2 patient 

population was less in Year 3 as the organism has become more dispersed across the 

network.
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The Hospital 5 cluster in Year 1 was associated with a high relative risk for phenotype 

“AMP CRO CAZ SXT” (RR=11.64) and “AMP CRO CAZ GEN SXT” (RR=27.17), but 

this statistical cluster disappeared entirely by Year 3. In contrast, no statistically significant 

findings were associated with Hospital 1 or Long-term Care Facility 3 in Year 1, but in Year 

3, they appear in Cluster 2 along with Hospitals 3 and 6. Three of these four facilities are in 

the same city of approximately 65,000 inhabitants, while the fourth is a neighboring 

community 7 miles away suggesting possible dissemination of the indicated multi-resistant 

strain phenotypes between the population catchment areas of the four facilities during the 

three years of the study.

4. Discussion

The traditional statistical approach for detecting infectious disease outbreaks is the 

application of temporal [29, 30] or spatio-temporal algorithms [15–18] to identify significant 

increases in case number or incidence case cluster suggestive of a public health event 

meriting real-time investigation and timely response. In this study, we explored the use of 

purely spatial, time-independent algorithms with alternate objectives in mind. The first 

objective was to explore the ability of spatial algorithms to recognize purely geographic 

clustering of microorganisms and strain phenotypes using routine microbiology laboratory 

data. The second was to explore the iterative application of these spatial algorithms over 

time to recognize the initial appearance, subsequent movement and diffusion, and in some 

instance disappearance of strain phenotypes in a geographic region. Based solely on 

statistical findings, one cannot be certain whether the clusters identified are true or 

important, but we believe that many would suggest concerning issues and emerging threats 

that would merit further epidemiological and/or microbiological investigation and 

potentially response.

A key motivator to this work was the recognition that healthcare facilities often consider – 

incorrectly – that findings within their own facility are “typical” of those in their own area. 

Infection control staff often believe that similar nearby facilities have the same types of 

microorganisms in a similar proportion and with similar epidemiology as their own. Prior to 

this study, we found many examples where this was not the case, so we sought to develop 

algorithms for the systematic detection of such clustering. In some instances, geographic 

clustering of multidrug-resistant bacteria is to be expected, for example within intensive care 

and burn units or within tertiary care hospitals and long-term care facilities. However, in 

many cases, observed clustering does not have an obvious explanation. Contributory factors 

may include poor local hygiene measures, inappropriate antimicrobial use practices, chance 

historical events, or underlying population demographics of the community served by the 

laboratory. The recognition that the challenges faced by each facility are different is a first 

step towards targeted investigation, intervention, and control efforts. In this study, we 

selected E. coli as a pathogen for study and the testing laboratory as the geographic unit of 

study, but the methods are generalizable and can be applied to other species and location 

coordinates.
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4.1 Comparison of SaTScan multinomial model to traditional chi-square

We applied spatial algorithms employing the multinomial probability model to compare the 

observed proportions of distinct multidrug-resistant phenotypes of E. coli isolates among the 

network facilities. The SaTScan spatial multinomial model algorithm is conceptually similar 

to traditional chi-square statistics – quantifying whether the “observed” distribution of cases 

is statistically consistent with the “expected” distribution of cases, but with two crucial 

advantages: 1) the the SaTScan approach utilizes configurable scanning windows, so is not 

restricted to pre-defined geographic entities and groupings as traditional chi-square would 

be; and 2) critically, a traditional chi-square calculation provides only a simplistic “yes” or 

“no” response to the question of whether the observed distribution of cases in its entirety is 

or is not consistent with random variation - but without identifying particular rows or 

columns which deviate most from expectations. In contrast, the multinomial approach 

provides more granular details such as p-values for cluster significance and relative risk 

associated with each multi-resistance phenotypes which facilitate the recognition of the 

major phenotypic strains and locations associated with statistically significant clusters.

These characteristics are well-highlighted in Table 3. A traditional chi-square based on the 

rows and columns of this table demonstrates a p-value of p<0.00001, though the minimal 

data requirements for performing chi-square are not met and there is no obvious conclusion 

to be drawn as to which phenotypes and which locations deviate most significantly from 

expectations. Furthermore, this traditional approach cannot recognize clusters associated 

with facility groupings, for example Hosp1+Hosp2+LTC3, which can be explored with the 

SaTScan spatial multinomial model.

The strengths of the multinomial approach can be seen in Table 4. A p-value is associated 

with each cluster (which could represent a single facility or multiple), and for each 

resistance phenotype within this cluster an associated relative risk is presented. For example, 

patients associated with Hospital 5 have nearly 26 times the risk of having an E. coli with 

multi-resistant phenotype “AMP CRO CAZ GEN SXT” than patients at other facilities, a 

finding probably unknown to staff members at Hospital 5, who perhaps consider this to be a 

“usual finding” while staff members in other facilities are likely unaware of how frequent 

this particular strain is at one of the other facilities in their network.

Table 4 highlights three rows with the resistance phenotype commonly associated with E. 
coli ST131, one row with the base phenotype of “AMP CRO LVX” non-susceptibility, one 

row with additional SXT non-susceptibility and one row with non-susceptibility to both SXT 

and GEN. Of note, all three of these rows were seen in Hospital 2 patients, suggesting an 

important clustering of distinct strains of possible E. coli ST131 in the patients served by the 

laboratory of this facility. As this was a retrospective analysis of clinical isolates, molecular 

confirmation of the E. coli ST131 genotype was not possible, but in real-time monitoring 

molecular confirmation and epidemiological investigation and response would be feasible.

Table 7 is an extract of Table 3, but including only rows with this putative E. coli ST131 

phenotype. So the clustering of the putative E. coli ST131 in the Hospital 2 patient 

population (smaller than population served by Hospital 3) suggested by the multinomial 

analysis could potentially have been suspected from a thorough but tedious manual 

Park et al. Page 10

Expert Rev Anti Infect Ther. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inspection of the original phenotype distributions and figures, but elucidated in a manner 

which is more comprehensive (addressing all locations and phenotypes, both high priority 

concerns like E. coli ST131 and non-priority), systematic (amenable to automation and 

configurable alerts), flexible (considering both individual facilities and groups of facilities), 

and generalizable to other settings and data sources.

4.2 Changes in geographical clustering over time

While we did not utilize the space-time version of the multinomial scan statistic, it is 

meaningful to look at changes in these static snapshots of geographical clustering over time, 

especially to explore important changes in the distribution of strains over time that are too 

gradual to be recognized by algorithms optimized for the detection of abrupt and time-

limited outbreaks. Using the clinical databases of the network facilities, one can distinguish 

three priority scenarios of public health relevance:

• Stable geographic clustering: In this scenario, the underlying 

epidemiology of the involved microbial populations appears stable. The 

clustering of resistant strains may reflect higher risk populations, as in 

intensive care units or university hospitals, or unexpected findings in low-

risk medical wards or certain long-term care facilities, but not others.

• Early geographic clustering that disappears in time: The disappearance of 

clustering over time may simply reflect a decrease or disappearance in the 

number of isolates with a given phenotype over time. This could be due to 

evolutionary fade out or aggressive targeted infection prevention measures. 

Of greater public health concern would be the progressive dissemination 

of a strain from an initial concentrated focus of infection (in which control 

efforts could be Saggressive and locally targeted) across a geographic 

region so that the strain is increasingly common but with a more diffusion 

distribution (in which targeted control efforts are less likely to be 

successful).

• Geographic clustering that appears in time: Clustering of this type would 

suggest the incursion of a new threat into the geographic region studied (or 

alternatively a concentration of a strain previously broadly disseminated). 

The appearance of new strains in a defined geographic unit should prompt 

timely investigation, confirmation, and where appropriate response actions 

to limit spread to other geographic areas.

Table 6 displays a comparison of the most prominent statistical clusters in Year 1 of the 

study to those of the Year 3, and the strong statistical association of isolates with the 

frequent E. coli ST131 resistance phenotype in the Hospital 2 population appears in both 

years. However, one can note the great drop in relative risks associated with these 

phenotypes between the two time periods – RR of 9.79, 14.68, and 4.89 in Year 1 dropping 

3.14, 5.03, and 3.39 respectively in Year 3. This is consistent with a manual review of the 

facility-level statistics by year – notably 6 of 7(86%) isolates with phenotype AMP-CRO-

LVX-ST, were seen in the Hospital 2 population in Year 1, but only 16 of 22 (73%) in Year 

3.
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Despite the increased number of Hospital 2 patients in Year 3, there is also a greater number 

of Hospital 3 patients with this phenotype in Year 3: 1) suggesting a gradual movement of 

this phenotype across the region; and 2) explaining the decrease in statistical significance of 

the Hospital 2 clustering. The number of cases with this phenotype in the other hospitals is 

between 0 and 3 in the full three-year study suggesting that these are sporadic cases of 

infection, whereas by Year 3, the strain appears to be well-established and endemic in both 

the Hospital 2 and Hospital 3 patient population.

Of note, there were no isolates with the typical E. coli ST131 phenotype during the first four 

months of three-year data collection, so it is possible that we have observed the initial or 

early appearance of this strain in a clinical database in this network, beginning in the patient 

population covered by Hospital 2, but without data from earlier time periods, one cannot be 

certain of this. In fact, this type of observation suggests that there is value in the iterative 

monthly application of these algorithms to support prospective detection of strain emergence 

and gradual spread that might be missed by algorithms optimized for acute outbreak 

detection.

It is useful to contrast the results of the current study with the findings of parallel work [17] 

conducted by our group in which we applied the SaTScan space-time Permutation model, an 

algorithm we have optimized for purposes of detecting acute outbreaks (over the course of 

several days to a few months), to the same database studied here. In that work, we identified 

16 statistical clusters suggestive of possible outbreaks over three years in the 10 facilities, 

but only one was with E. coli, and that statistical cluster did not overlap with any of the 

clusters identified in this study. A useful conclusion is that different algorithms can serve 

different purposes – the Space-Time Permutation model has been optimized for detecting 

acute/short-term clusters, often associated with unwarranted transmission of microbes within 

and between healthcare facilities, and the multinomial model, which we believe offers a new 

approach for identifying 1) stable geographic clustering; and 2) slow movements and 

changes in distributions of isolates.

4.3 Comparison of latitude-longitude coordinates versus meta-location groups

We explored two approaches for describing the geographic relatedness of healthcare 

facilities: 1) grid coordinates utilizing latitude and longitude; and 2) “meta-location” 

meaningful groupings of facilities based on geographic proximity, types of medical care, or 

patient referral patterns. The findings in this study indicate that statistical findings between 

the two approaches were similar.

Though there are merits in both approaches, the meta-location approach offers greater 

flexibility in defining the relationship between healthcare facilities utilizing a number of 

relevant dimensions beyond pure physical proximity. The approach is more robust with 

regards to the details of the geographic layout, for example if a healthcare network involves 

both urban and community facilities, mountainous or island communities (in which latitude 

and longitude do not adequately capture the practical distance between facilities). Most 

importantly, the meta-location approach is more generalizable to a broad variety of settings, 

for example permitting the application of these clustering algorithms to medical wards or 
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groups of medical wards within a hospital, facilitating the detection and tracking of 

healthcare-associated outbreaks [19].

5. Conclusions

Previous work by ourselves and others has demonstrated the value of statistical algorithms 

for the timely detection of emerging infectious disease threats and early response. In this 

study, we have aimed to expand the range of validated analytical approaches to incorporate 

non-temporal algorithms which identify unexpected spatial clustering in static snapshots. We 

found the SaTScan spatial multinomial model to be conceptually similar to traditional chi-

square analyses, but with significant advantages in granularity of statistical detail and 

insights, flexibility with regards to location definitions and groupings either utilizing latitude 

and longitude grid coordinators or meaningful hierarchical groupings of medical wards or 

geographical entities, robustness with regards to chi-square assumptions which often do not 

hold in practice, and generalizability. Based on the encouraging results obtained in this study 

and other work, our intent is to proceed with full integration of the multinomial model as a 

standard feature within WHONET.

The iterative application of the geographical analyses permits the recognition of stable 

geographic clustering, both expected and non-expected, as well as the gradual appearance, 

disappearance, and dissemination of distinct microbial subpopulations that would be missed 

with algorithms optimized for the detection of acute, time-limited outbreaks. For example, in 

this study we likely documented the early incursion of strains with the typical E. coli ST131 

resistance phenotype into the patient population served by one of the hospitals of the 

network with later spread and endemic establishment in the referral center of the network, 

but only sporadic cases in the other centers.

While the algorithms that we studied have very generalizable application, a number of 

studies have found that the use of antimicrobial resistance phenotypes as meaningful proxy 

indicators for microbial subpopulations greatly improves the specificity of detected signals – 

since cases detected are phenotypically homogeneous – and sensitivity – through decrease in 

background noise related to unrelated strains. It was necessary to exclude one facility from 

several of the analyses because of lack of availability of one of the key antibiotics studied, 

emphasizing the value of coordination among facilities in providing consistently available 

data for at least a core set of antimicrobials.

An important aspect of this work is its reliance on the widely used WHONET software to 

perform sophisticated statistical analyses for cluster recognition through its integration of a 

variety of statistical algorithms including those available within the free SaTScan software. 

WHONET is used to support surveillance of antimicrobial resistance in over 2,000 

laboratories worldwide in over 110 countries. Thus our aim is not only to evaluate and 

validate data management and alert strategies, such as those described in this paper, but also 

to support the their real-time integration into routine practice by microbiologists, infection 

control practitioners, epidemiologists, and public health authorities at local, regional, and 

national levels worldwide to support early detection, response, and containment efforts.
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6. Key issues

• Traditional statistical approaches for the detection of infectious clusters 

focus on the temporal component and deviations from a historical 

baseline.

• In this work, we applied the Monte Carlo-based spatial multinomial 

model available within SaTScan to explore geographic clustering of 

clinical isolates of multi-resistant E. coli in a healthcare network of six 

hospitals and four long-term care facilities.

• SaTScan's spatial multinomial model is conceptually similar to a 

classic chi-square RxC contingency table but with significant 

advantages in granularity of statistical feedback, flexibility in grouping 

geographic entities, and robustness with regards to underlying data 

assumptions.

• We analyzed space utilizing both latitude and longitude grid 

coordinates as well as meaningful facility groupings based on 

geographic proximity and patient referral patterns with similar findings 

observed for the two approaches. The meta-location approach offers 

greater robustness to assumptions on meaningful “distances”, flexibility 

in defining relationships between locations, and generalizability to a 

number of clinical scenarios.

• The iterative application of geographic cluster algorithms permits the 

recognition of stable clustering over time (both expected and 

unexpected) as well as the appearance, disappearance, and gradual 

dissemination of resistant populations that would be missed by 

statistical algorithms optimized for acute outbreak detection.

• Antimicrobial multi-resistance test results are valuable phenotypic 

strain markers which improves the specificity, sensitivity, and 

epidemiological relevance of cluster detection.

• WHONET and SaTScan software is utilized to support surveillance of 

infectious diseases and antimicrobial resistance in over 2000 

microbiology laboratories in over 110 countries, so the strategies 

elaborated within this paper have broad applicability by a range of non-

statistician healthcare professionals worldwide.
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Figure 1. 
Distribution by of all E. coli isolates (1a) and E. coli with the typical E. coli ST131 multi-

resistance phenotype – non-susceptible to AMP, CTX, and LVX, but susceptible to CAZ 

(1b).
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Table 1

Facility characteristics

Facility Facility type Number of beds Number of patient-days Average Length-of-Stay (Days to the nearest 
integer)

Hosp1 Short Term Acute Care 50–100 10,000–30,000 6

Hosp2 Short Term Acute Care 101–200 30,001–50,000 4

Hosp3 Short Term Acute Care >200 >50,000 6

Hosp4 Short Term Acute Care 101–200 10,000–30,000 4

Hosp5 Short Term Acute Care 50–100 <10,000 5

Hosp6 Short Term Acute Care 101–200 10,000–30,000 4

LTC1 Nursing Care 101–200 30,001–50,000 *

LTC2 Transitional Care <50 * *

LTC3 Rehabilitation <50 * *

LTC4 Psychiatric 50–100 * *

*
Information not available from either the American Hospital Directory11 or the individual facility's web site
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Table 2

Isolate distribution by facility

Facility Number (%) of isolates Number (%) of E. coli isolates Number (%) of E. coli tested against core antimicrobials

Hosp1 2,917 (5) 1,008 (5) 829 (82)

Hosp2 12,820 (23) 4,696 (24) 4,675 (99.6)

Hosp3 22,927 (42) 7,464 (39) 7,192 (96)

Hosp4 6,241 (11) 2,593 (13) 137 (5)

Hosp5 4,061 (7) 1,518 (8) 923 (61)

Hosp6 5,165 (9) 1,954 (10) 1,882 (96)

LTC1 16 (0.03) 9 (0.05) 2 (22)

LTC2 261 (0.5) 59 (0.3) 56 (95)

LTC3 191 (0.3) 42 (0.2) 41 (98)

LTC4 52 (0.1) 19 (0.1) 19 (100)

TOTAL 54,651 19,362 15,756 (81)
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